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Abstract

This is the Final Report of a three year project to “Develop, Apply, and E-
valuate Wavelet Technology” conducted under ARPA Order #7092, AFOSR
Contract #F49620-89-C-0125.

The Final Report has two parts. This part contains a summary technical
report, and appendices that describe outreach activities to the scientific,
commercial, and governmental communities under the program.

The second part of the Final Report is a separately bound monograph
titled The scalable structuire of information: An essay on wavelet technology
and its application to bandwidth management. It is a semi-technical presen-
tation for people who want to know what wavelets are, how they are related
to conventional mathematical tools, and what they are good for. The Essay
describes the foundations of wavelet technology; provides an informal intro-
duction (i.e., many figures; no proofs) to the many types of compactly sup-
ported wavelets; and describes their application in bandwidth management.
The applications emphasize compression, channel coding. and numerical so-
lution of partial differential equations.

Keywords: Audio compression; Bandwidth compression; Biorthogonal wave-
lets; Channel coding; Complex wavelets; Connection coefficients; Discrete
functions; Formal derivatives of wavelets; Higher rank wavelets; Image com-
pression; Numerical solution of partial differential equations; Orthogonal
wavelets; Scaling function; Transient signal analysis; Wavelet bases; Wavelet-
Capacitance matrix; Wavelet-Galerkin method; Wavelet matrices; Wavelet
matrix expansion.
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Executive Summary

This is the Final Report of a three year project to “Develop, Apply, and E-
valuate Wavelet Technology” conducted under ARPA Order #7092, AFOSR
Contract #F49620-89-C-0125. The Final Report has two parts. This part
contains a summary technical report, and appendices that describe outreach
activities to the scientific, commercial, and governmental communities under
the program.

The second part of the Final Report is a separately bound monograph
titled The scalable structuire of information: An essay on wavelet technology
and its application to bandwidth management. It is a semi-technical presen-
tation for people who want to know what wavelets are, how they are related
to conventional mathematical tools, and what they are good for. The Essay
describes the foundations of wavelet technology; provides an informal intro-
duction (i.e., many figures; no proofs) to the many types of compactly sup-
ported wavelets; and describes their application in bandwidth management.
The applications emphasize compression, channel coding. and numerical so-
lution of partial differential equations.
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1 Report Summary

In our work on this contract, we completed work in three major areas: the
mathematical foundations of wavelet theory, and applications of wavelets to
signal processing and partial differential equations. In this final technical
report we summarize the results of our investigations in these three areas
and report on directions for further research.

In the area of mathematical foundations, we have investigated both dis-
crete and continuous aspects of wavelet theory. The original wavelets of
Daubechies [2] and Mallat [25] correspond to 2-band filter banks; they split a
signal (or subspace of functions) into two parts. We have developed [17, 14] a
far-reaching generalization of the wavelet concept (“‘higher rank wavelets”)
to the case where a signal is split into m different pieces or frequency bands?.
This generalization encompasses block transforms such as the FFT as well
as overlapped transforms, all within a multiresolution framework. We have
carried out much of the detail work necessary to implement this generaliza-
tion (cf. [12, 13]). We have also developed two distinct parametrizations
of the “rank 2" wavelets, which prove useful in adaptive choice of a wavelet
for engineering applications. In the continuous realm, we have investigated
wavelet expansions of function spaces - characterizing those wavelets which
yield orthonormal bases of LZ(R) and describing the local behavior of wavelet
functions, establishing connections with classical analysis.

In our investigations of the applications of wavelets to signal processing,
we have had two major foci: image compression and computational algo-
rithms. We have developed a wavelet-based still image compression system
[56] with performance superior to that of traditional DCT-based algorithms.
Gopinath and Burrus [8] have studied computation with the wavelet trans-
form, and Gopinath, Burrus, and Lawton [11] have investigated the approx-
imation of linear translation-invariant operators with the wavelet-Galerkin
operator. Furthermore, we have investigated connections between the wave-
let and Fourier transforms and described the characteristics of some funda-
mental signals in wavelet phase space.

We have applied wavelet based numerical methods to the solution of par-
tial differential equations [6, 18, 19, 33, 34, 35, 54). Specifically, we compare
the Wavelet-Galerkin method to standard numerical methods for the numer-

lhere m is an integer greater than or equal to two.




ical solution of

e The Euler equations of a two-dimensional, incompressible fluid in a
periodic domain.

o The Biharmonic Helmholtz equation and the Reduced Wave equation
in nonseparable, two-dimensional geometry.

o The Euler and Navier-Stokes equations in nonseparable, two-dimensional
geometry.

The wavelet methods have significant advantages with regard to stability,
accuracy, and rate of convergence.

2 Mathematical Foundations

2.1 Higher Rank Wavelets

We have generalized the two-band wavelets of Daubechies and Mallat to the
m-band (or rank m) case, yielding a large family of transforms which include
block transforms such as the FFT, as well as overlapping generalizations of
these m x m block transforms. Furthermore, these “higher rank wavelets” are
well-suited to use in a multiresolution analysis tree. They have applications
in a broad range of areas from image and audio compression to interference
cancellation and transient detection.

A wavelet matrix is an m xmg matrix A with complex entries a} satisfying

3 LTy = M8, and (1)
*
Y af = ms*O. @)
*

The first row a) of the wavelet matrix is called the lowpass row since it
corresponds to a lowpass filter, and the other rows are the wavelet or highpass
rows. The genus g is the number of m x m blocks which make up the wavelet
matrix. The conditions (1)-(2) can be rephrased in the language of polyphase
factorizations of filter banks; for details see [17].

The wavelet matrices of genus 1 play a special role; these m x m matrices
are called Haar wavelet matrices; they include a wide range of block trans-
forms such as the FFT, Discrete Cosine Transform, and Hadamard-Walsh




transform. Furthermore, each wavelet matrix (of arbitrary genus) has such
a Haar matrix associated with it, by

Hy=(k;), h;= ;ahm : ®3)

This Haar matrix determines the frequency partitioning properties of the
corresponding wavelet filter bank.

Pollen [27] at Aware has carried out a parametrization of the rank 2
wavelets, describing a genus g wavelet by means of g — 1 angular parameters.
We are currently working on the generalization of this result to arbitrary
rank.

We have observed [17] that the orthogonality condition (1) implies that a
wavelet system provides an orthonormal representation for discrete functions:

Theorem 2.1 Given a signal f(n) and an m x mg wavelet system a}, then
f has a unique wavelet ezpansion

m~-1 oo

f(n') = Z E c;a:ﬂ-lm

=0 |l=-00

where ]
q= ;;f(n)aml+n .

Higher Rank Daubechies Wavelets

One of the first questions to arise in the theory of higher rank wavelets
is “what is the generalization of Daubechies’ regular compactly supported
wavelets to the rank m setting?” Regularity is important because regular
filters “pass through” polynomial information and because regular filters lead
to regular (smooth) scaling functions. Given an m-band FIR wavelet filter
(a0, a1, ..., ay) with frequency response

A(e“) =Y ape™
k
we say that the filter is regular of order N iff the frequency response A is

flat (has a zero) of order N + 1 at the m-th roots of unity w = 2xi/m.
There are numerous equivalent formulations of regularity; they are discussed
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Figure 1: Frequency response for regular wavelet filters: N =1, m =2,3,4

in [13, 40]. We have constructed rank m wavelet lowpass filters with N-th
order regularity and derived an explicit formula for the “scaling coefficients”
(i.e. lowpass filter taps). The key is to begin with the Haar lowpass filter
h=(ap=1,a1=1,...,am-1 =1) and form

A(e) = HY(c)Q(e)

By examining the square modulus of A and enforcing the orthogonality con-
dition (1), we find an explicit formula for |Q(e*)|? and thus A; the details
appear in [13). Figure 1 displays the frequency responses of the N = 1 regular
wavelet filters for m = 2,3,4.

Having derived the rank m wavelet lowpass filter using the above con-
struction, we are then able to construct a full rank m wavelet matrix, given
the lowpass filter and the desired characteristic Haar matrix. This construc-
tion is described in [17] and [12}; it amounts to solving a set of m+g—1 linear
equations for a wavelet matrix of rank m and genus g. Furthermore, given a
valid wavelet matrix with regularity of order N, we are able to construct rank
m wavelet tight frames for L?(R). Specifically, the rank m scaling function
is the solution of the equation

e(z) = ;a‘;’:so(mz ~k); (4)




Basis elements phi, psi_l, psi_2, psi_3 with regularity N=3
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Figure 2: Basic elements ¢, !, %2, ¢® with regularity N = 3

if the scaling coefficient set has regularity of order N, then the resulting
scaling function will have AN continuous derivatives, for some constant A
independent of N. We can then construct the m — 1 wavelet functions by

#(@) = Tate(me—k), s=1,2,...,m~1. (5)

The collection of functions
{mj/zt/:‘(z/mj)}

form a tight frame and in most cases an orthonormal basis for L?(R); details
are to be found in [14, 20]. Figure 2 shows the functions ¢, ¢!, v?,¢3 for a
rank 4 wavelet system with regularity order N = 3.

We have discovered [16] that when using a regular wavelet filter (of ar-
bitrary rank and regularity order N), polynomials are generalized eigenfunc-
tions for the wavelet transform. That is, a sequence k(k) whose elements are
a polynomial in k of degree less than or equal to N will emerge as a polyno-
mial sequence of the same degree under the operation of convolution with a
wavelet filter and decimation by a factor of m. This property characterizes
regular wavelet lowpzss filters, and should prove useful, for example in the
detrending of signals with an underlying polynomial trend. When using a full
wavelet filter bank, a purely polynomial input will produce nonzero outputs
only for the lowpass filter.




We have also made significant steps [24] in the development of wavelet
theory for dimensions greater than one. In this setting the sampling sublattice
becomes paramount; in the classical one dimensional rank 2 case, the sam-
pling sublattice is the even integers 2Z C Z. While Mallat [25] introduced
a separable wavelet theory in multiple dimensions (i.e., multidimensional
wavelets as tensor products of one-dimensional wavelets), the fully general
theory outlined in [24] permits the use of a nonseparable subsampling ma-
trix M. Specifically, a general n-dimensional wavelet system is given by an
n-dimensional lattice A C R", a matrix M with integer entries and a set of
coefficients a, satisfying:

e MACA

e M is expansive (all eigenvalues strictly greater than one)

® 3 aeA af\af\,-i—Mu = det M§*"'8,0,

[ J ZX a; = det M66,0 .

The scaling and wavelet functions will then be given by appropriate gen-
eralizations of the formulas (4) and (5). One can seek regular wavelets as
we did above for the one dimensional rank m case; preliminary work on this

problem is reported in [30]. Figure 3 displays a nonseparable two-dimensional
wavelet (the “Novon” multiplier) with regularity order N = 1.

2.2 Parametrization of Wavelets

Parametrization of compactly supported wavelets is essential for effective
choice of a wavelet basis in a particular application. We have arrived at t-
wo independent parametrizations of compactly supported wavelets, that of
Pollen [27] cited earlier and one due to Wells [55]. We summarize Wells’
parametrization of regular compactly supported wavelets here. Given a scal-
ing coefficient set {a;} with frequency response A(e*), Daubechies describes
the scaling coefficients with regularity of order N as those for which

A(e¥) = (1+ )V Q(e™) .
She solves for Q by changing variables to y = sin?(w/2), examining

[A(e™)®




Figure 3: Novon scaling function with regularity order N =1

and finding that

N-1
Q)P =X (NZ1tk) vt +47Pw),

k=0

subject to several constraints on the polynomial P. In particular,
P(1/2-y) must be an odd polynomial

and
N-1

> (N1t +vP 20

k=0

(6)

(7)

(8)

Wells takes this description as a parametrization, called the reduced moduli
space, of all wavelet scaling coeflicients sets with regularity of order N. For
each regularity order N and degree M of the polynomial P (i.e. M free
parameters to the wavelet) he describes a polyhedron in parameter space,
each point of which gives rise to a valid polynomial P satisfying (7) and
(8). Furthermore, the vertices of the polyhedron lie on the boundary of the
reduced moduli space, so that in some sense this polyhedron is maximal. The
signal processor can then optimize over the parameter space for an additional
desired trait (such as the stopband performance of the wavelet lowpass filter).
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2.3 Wavelets and Classical Analysis

Wavelets and Weierstrass functions

Resnikoff [38] at Aware has discovered a link between the compactly sup-
ported wavelets of Daubechies and Weierstrass’ famous example of a nowhere
differentiable continuous function. In particular, he has found that the s-
caling function ¢ can be expressed as an infinite series of harmonics of a
Weierstrass function. Weierstrass’ original example was the infinite series

(=]
Z a* cos bkxz ;
k=0

we generalize this to allow the parameter a to be an n x n matrix and define
the Weierstrass function with matriz parameter a to be

w -
Wia,b] := Y a*e?™¥'= . (9)
k=0
We now break the scaling function ¢ of equation (4) into pieces defined on
the unit interval [0, 1]:

®;(z) = o(j + z)x101)(2) ; (10)

here xjo,1)(z) denotes the characteristic function of the unit interval. Resnikof-

f [38] proves that the vector-valued function ®(z) = {<I>.,-(:1:)};.V=1 can be rep-
resented as a series of “Weierstrass harmonics™:

®(z)=Co + 2.':'4 C,WI[T,2|(¢z) (11)

where the matrix

T = (Ty) = (2 2t

is derived from the scaling coefficients a; and the C, can be determined from
¢. Furthermore, Resnikoff has discovered that if the scaling function ¢ is
regular of order N, (e.g. the wavelet moments vanish up through order N),
then each of the functions ®; is a scalar multiple of the Bernoulli polynomial
of degree j. A detailed discussion and proofs appear in Resnikoff [38].
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Daubechies Scaling Function on [0,3)

Pollen [29] has used the first principles of analysis to investigate the s-
caling function ¢p4 associated with Daubechies 4-element scaling coefficient
set “D4”. He is able to prove the following results:

® pq takes its values in Q[v/3].
® ©p4 is continuous.
® ©p4 is not right-differentiable at any dyadic integer 2 in [0, 3).

® ©p4 is left-differentiable at every dyadic integer in [0, 3).

2.4 Wavelet Frames and the Wavelet-Galerkin Oper-
ator

Lawton at Aware has investigated [20, 21, 22] the properties of rank 2 wavelet
expansions of the function space L?(R). He has been able to prove that every
compactly supported wavelet gives rise to a “tight frame” for L?(R), and he
has also characterized the exceptional set of those wavelets which yield a
tight frame but not an orthonormal basis. Lawtons’s approach keys on the
wavelet-Galerkin operator, defined as follows:

Given a valid wavelet scaling sequence a, form the operator S, on se-
quences in I? by

Sa(h)(k) = 2" anazh(2k +m —n). (12)

The quadratic orthogonality condition (1) means that the Dirac sequence
6(k) is an eigenvector for S, with eigenvalue 1. Denote by W the subset con-
sisting of those scaling sequences for which S, has more than one eigenvector
with eigenvalue 1. Use Vy to denote the set of scaling sequences of length
2N and define Wy = W N Vy. In [20] Lawton proves the following

Theorem 2.2 For N 2 1, let a € Vy, let ¢ and ¢ be the scaling function
and wavelet constructed from a, and let S, be as above. Then the set of

2A dyadic integer is a rational number z such that there exists N, € Z with 2Nez € Z.




13

(normalized) dyadic scalings of integer translates of 3 forms a tight frame
for L*(R), i.e. for any g € L*(R),

g= - (Yinlg)¥in -

J

Furthermore, for N > 2, Wy is a nonempty proper algebraic subset of Vy
and the tight frame forms an orthonormal basis unless a € Wy.

In [21], Lawton has been able to turn this result into a characterization
of those wavelet bases which are orthonormal bases:

Theorem 2.3 Let a € Vy. Then the tight frame of wavelets constructed
using a is not an orthonormal basis if and only ifa € Wi, i.e. iff S, has 1
as an eigenvalue with multiplicity greater than 1.

2.5 Future Directions

The theory of higher rank wavelets presented above provides a high-level,
unified framework encompassing many of the transforms used in signal pro-
cessing today. Promising research directions exist in this area: parametriza-
tion of the family of higher rank wavelets, the theory of biorthogonal rank
m wavelets (the rank 2 theory was introduced in [1]), and the application of
higher rank wavelet transforms to specific application areas, such as image
processing and sonar transient detection.
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Figure 4: Aware’s wavelet-based image compression system

3 Signal Processing

3.1 Image Processing

In the course of its work on the contract, Aware has developed a state-of-
the-art wavelet-based still image compression system. We outline the design
of the system and its performance below; greater detail appears in [56] and
[37].

Our system for (lossy) compression of images is built of three components:
a (wavelet) transform, a (lossy) quantizer, and a (lossless) encoder, depicted
in Figure 4.

The transform is a rank 2 wavelet transform, which operates on a discrete
data stream by convolution and decimation. In particular, we have two filters,
a lowpass filter {a;} and a highpass filter {8;} with

bk = (—l)kan_k
and from a one-dimensional input signal f(n) we obtain the two outputs
Lf(n) = (f * a)(2n) (13)

and

Hf(n)=(f*b)(2n). (14)
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Figure 5: Mallat decomposition

In order to apply this one-dimensional transform to a two-dimensional ar-
ray of pixels I representing an image, we apply the 1-d transform first in
the z direction to produce iwo output images L./ and H.I, and then ap-
ply the 1-d transform in the y direction to these to obtain 4 output images,
L.L,, L H]1I, HL,, H H,I. We then iterate this procedure on the subim-
age L.L,I in a Mallat tree structure. 3 This iterative decomposition of an
image is depicted in Figure 5. Observe that because of the critical decima-
tion, the output of the transform has exactly as many data points as the
input.

The next step is to quantize the values of the transform coefficients; we
experimented with a number of scalar and vector quantizers, and ultimately
found the most effective method to be a uniform scalar quantizer with dif-
ferent binwidths for the different output bands. One reason for this is that
the high-frequency components (such as the H,H,I output) are concentrated
around edges, and image intensities at edge discontinuities are known to be
approximately Laplacian-distributed. We can incorporate these Laplacian
distributions into computations for a uniform scalar quantizer rather easily,
as described in (7).

Once the transform coefficients have been quantized, we further exploit

3We have investigated alternative methods of iterating the transform, e.g. further
decomposing the L. H,I term in z; details are presented in (37).
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redundancies in the data by lossless encoding, such as Huffman coding or an
adaptive coder such as the Q-coder developed at IBM [32]. We have obtained
our best results with the (nonadaptive) Huffman coder.

Upon implementing this wavelet image compression system, we have
found it to exhibit several advantages over Fourier-based methods. First,
since we used compactly supported wavelet filters (cf. [2]), edges contribute
to a small number of transform coefficients. This greatly reduces the “ring-
ing” associated with Fourier methods, where a discontinuity has a broadband
spectrum, and quantization can produce artifacts across the support of the
Fourier components. Fourier methods such as the DCT require that the im-
age be broken into subblocks (usually 8 x 8 or 16 x 16), both w0 bound the
O(N log N) complexity and to limit the ringing just described. This produces
quilt-like artifacts once the transform coefficients are quantized, as differen-
t subblocks end up with different total intensities. A significant advantage
provided by our system is that no subbblocking of the image is necessary
(the wavelet transform has O(N) complexity), and these blocking artifacts
are eliminated. Finally, the local nature of the computations (13) and (14)
enables efficient hardware layouts for wavelet transform computations.

3.2 Signal Detection and Classification

Workers at Aware have investigated numerous areas of signal processing with
wavelets, including an analysis of wavelet transform computations (8], a study
of wavelets and linear translation-invariant operators [11], an analysis of the
effect of multirate filtering on convolution [15], discovery of new relationships
between the wavelet and Fourier transforms [39], and an investigation of
wavelet phase space [36].

Gopinath and Burrus [8] have developed efficient means of computing
the continuous wavelet transform for an arbitrary wavelet by using the dis-
crete wavelet transform as an intermediary. Define the continuous wavelet
transform of a function f with respect to a wavelet w by

W, f(s,7) = ]R F(£)2*w(2%t — 7)dt

and write the coefficients of the discrete wavelet transform of a function g
with respect to the wavelet ¢ (as in (22) as

W¢g(j’ k) .
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Then Gopinath and Burrus find that
Wof(s,7) = Y Wyf(i',K)Wyw(j, k)Wytp(s +j— ', 2*H "k +wiT+ k).

3k gk

(15)
In other words, a general continuous wavelet transform may be computed as
a double summation of the discrete wavelet transform of f and w against a
kernel which is the continuous wavelet transform of the wavelet ¢ with itself.
Notice that the kernel can be precomputed once (as may be the DWT of
the wavelet w, once it is known), and so the continuous wavelet transform
computation is reduced to a discrete wavelet transform computation, which
may be done efficiently by lattice methods such as in [47).

Linear translation-invariant operators (such as differentiation) can be
well-represented by the wavelet-Galerkin method; this is developed in Gopinath,
Lawton, and Burrus [11]. Consider a linear translation-invariant operator T
(e.g. T = dP/dzP); it can be represented as convolution with a kernel t(z).
In the case of the Galerkin method we approximate the operator T defined
on L%(R) by an operator Ty which is the projection of T onto a subspace Va,
associated with a meshsize Az: Ty = Pp,TPa. where P, is the projection

onto V5, = Span {\/I/A:mp(:t/Az - Ic)} Thus we obtain an expansion
Pa:f= E f Az kPAzk
k

and
gazk = fA:,k * tA: (16)
where
tazk = (Paz0, Tpazk) -

Thus the wavelet-Galerkin discretization of T acts as a discrete convolution
on the expansion coefficients of fi. It is proved in [11] that

o If a function f can be well-approximated locally by polynomials of
degree less than or equal to n, then the action of the operator T is
well-approximated by convolution of the samples of f with the kernel
tx that acts on the expansion coefficients.

o If the wavelets being used in this approximation procedure have mo-
ments vanishing to order M, then differentiation of order p < 2m is
well approximated by the wavelet-Galerkin discretization
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Heller [15] has investigated the effect of multirate filtering (convolution
followed by decimation) upon linear convolution. As the core operation of
linear time-invariant systems, convolution is perhaps the most significant
operation of signal processing. The Fourier transform is important precisely
because it diagonalizes convolution, and yet in doing so it loses all time-
domain information. Multirate filter banks provide both time and frequency
information in their output, yet lose the precision of the Fourier transform in
dealing with convolution. Heller’s work in [15] is a first step in understanding
the effect of convolution and decimation on linearly convolved inputs.

Resnikoff and Burrus [39] have discovered a set of formulae relating the
Fourier expansion of a periodic signal with its wavelet expansion. Suppose
that g(¢) is a periodic function on the real line (i.e. g(t) = g(t + 1)) whose
Fourier expansion is

g(t)= i b(n)e21rint

n=-=00
with coefficients

) = [ glt)ermdt,

Analogously, the wavelet expansion of g is

[

=3 e +3 3 di,bgiat) (7)

I=—00 j=0 k==-c0

where ' '
¥ix(t) = 29/%p(27t — k)
and the family {¢;,%;:} form an orthonormal basis for L?(R) as described
in [21].
Resnikoff and Burrus use the properties of the scaling function ¢ and
wavelet ¥ in combination with the periodicity of g to derive the facts that

c()=c(0)=cforalll.

They then express the Fourier coefficients (n) in terms of the wavelet coef-
ficients and the Fourier transform of the wavelet y:

c if n=0

”""={ £ SZ d(G, Fbaln) if n#0 (18)
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Conversely, they find that the wavelet coefficients of g in terms of the
Fourier coefficients:

d5,k) = Y- bnbia(-n) , and (19)
c(l)=c=¥0). (20)

Resnikoff [36] has developed and investigated the notion of wavelet phase
space — the space of wavelet coefficients which provides a time-frequency
picture of a function. In particular, suppose we are given a rank 2 wavelet
system {a;} and the associated scaling function ¢ and wavelet ¢, so that an
L? function f(z) has the expansion

f@) =Y api(z)+ 3 Y ciavik(z) . (21)

leZ JEZ, keZ

Alternatively, we can omit the scaling function part and use the full wavelet

expansion

f(.’t) = Z 2 c,-,,tl)jk(:c) . (22)

JE€Z keZ

Whereas a Fourier transform analyzes a signal in terms of its frequencies,
a wavelet transform breaks the information content of a signal into scale
and time components. The index j determines the scale while the index
k represents time (or spatial) translation within that scale. The collection
of wavelets {4k}, fized form an orthonormal basis for the information (or

detail) at scale j; The detail over all scales j with j < 0 is amalgamated into
the set of scaling functions ¢;(z) = ¢(z — ) in the expansion (21).

We can now plot the magnitudes of the coefficients ¢;;, with the z axis
as the k or time index and the y axis as the j or scale index, providing a
time-scale representation of the energy in the signal f. Several examples
are worked out in detail in [36]; we describe one of them, the Dirac delta
function, here.

The Dirac distribution has the full wavelet expansion

6(z) =YY 2P¢(=k)pi(z) ;

JEZ keZ

the magnitudes of these coefficients for a fixed basis {1, } are shown in figure
6. The magnitudes of the coeficients grow exponentially with j even as the
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Figure 6: Wavelet phase space plot of the Dirac distribution

support width in k is shrinking. A finite approximation of the graph of the
Dirac distribution is shown above the phase space plot, while a plot of the
magnitude of the Dirac’s Fourier transform is shown at the right. Notice that
the wavelet phase space representation accurately describes the location of
the Dirac, which the Fourier representation is unable to do.

4 Wavelets and the Numerical Solution of
Partial Differential Equations

We have applied wavelet based numerical methods to the solution of partial
differential equations [6, 18, 19, 33, 34, 35, 54]. Specifically, we compare the
Wavelet-Galerkin method to standard numerical methods for the numerical
solution of
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o The Euler equations of a two-dimensional, incompressible fluid in a
periodic domain.

o The Biharmonic Helmholtz equation and the Reduced Wave equation
in nonseparable, two-dimensional geometry.

o The Euler and Navier-Stokes equations in nonseparable, two-dimensional
geometry.

The wavelet methods have significant advantages with regard to stability,
accuracy, and rate of convergence.

We numerically resolve the two-dimensional Euler equations and study
the phenomena of two-dimensional turbulence. The compactly supported
wavelets of Daubechies provide an orthogonal basis for the square integrable
functions on the line or circle. These have several advantages for the nu-
merical approximation of solutions of differential equations, including exact
representation of polynomials of certain degrees and compact-support. For
nonlinear systems (Euler equations) with solutions that may develop sharp
gradients the primary advantage seems to be that wavelets can accurately
approximate the smooth component to a solution while correctly resolving
the components associated with strong gradients [54]. The reason for this is
that wavelets are less smooth than their order of approximation and therefore
are less stiff than other higher order methods, i.e. Fourier or spline bases.
For instance, the six term Daubechies scaling function (D6) can exactly rep-
resent polynomials through the second degree. However, the actual scaling
function has only a continuous 1.06 derivative.

We apply the Daubechies scaling function (translates of) with the stan-
dard Galerkin technique to define the wavelet-Galerkin method. We find it
possible, with appropriate implicit time differencing, to develop numerical
methods for the inviscid Euler equations. We also develop solutions that use
implicit time differencing and the standard hyperviscosity.

For the inviscid calculations the numerical solutions develop a locally os-
cillatory structure. However, a simple three term smoothing removes the
oscillations and produces a smooth approximation. The hyperviscosity regu-
larized solutions are already smooth. We compare the results of these calcula-
tions by integrating over very long times. The similarities and differences sug-
gest several interesting consequences for two-dimensional turbulence [54, 35).
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Basically, the inviscid calculations over a long time preserve certain hy-
perbolic structures that are not preserved by the regularized calculations,
and seem to better capture the limiting inviscid behavior.

We have presented a series of numerical experiments that illustrate sev-
eral phenomena of possible relevance to two-dimensional turbulence and its’
numerical resolution [54].

We use compactly supported wavelets as a Galerkin basis and develop
a wavelet-Capacitance Matrix method to handle boundary geometry. We
have developed an extension of the standard Capacitance matrix method
that greatly reduces the numerical residual errors [33, 34]. In contrast with
the standard method, our method shows fast, even spectral, convergence
at relatively coarse levels of discretization. Furthermore, for comparable
levels of discretization the rates of convergence appear to be independent of
the geometry. For several geometries we have made a detailed comparison
of methods, examining accuracy and rates of convergence. We have also
developed Least-Square versions of our algorithm for the Helmholtz equation
in nonseparable geometries and examined the accuracy and convergence of
these methods.

In summary, our numerical study of the Helmholtz equation shows that:

o the Wavelet-Galerkin/Capacitance Matrix method (The Wavelet-Capa-
citance Matrix Method) is stable and spectrally accurate. These results
apply to general nonseparable domains and all ranges of the parame-
ters.

o The Wavelet algorithm is found to obtain accurate results for prob-
lems where, for instance, finite difference methods do not converge, or
converge slowly, and where Fourier Spectral methods do not apply.

e For a fixed level of discretization, increasing the order of the wavelet
basis spectrally decreases the error.

o The rates of convergence in sup norm appear to depend on the wavelet
basis, DN, and discretization, éz, as (6z)V-5.

e The rates of convergence in sup norm appear to be independent of the
domain shape.




23

o Least-Square versions of the wavelet algorithm can preserve accuracy
and decrease the computation by more than a factor of four. The finite
difference algorithms would not allow effective least-squares implemen-
tations.

Furthermore,

e All errors (accuracy and convergence) are measured in the pointwise
sup norm.

e Our implementation is fast, since it is based on fast (FFT) evaluations
for periodic geometry adapted to nonseparable geometry.

e The basic algorithm applies to one, two and three space dimensions,
without essential modification.

e For the Euler and Navier-Stokes equations fast wavelet algorithms have
been developed for flow in nonseparable domains.

5 Channel Coding

Tzannes and others at Aware [42, 43] have developed innovative applica-
tions of wavelets to error correcting codes in communications channels. In
particular, the wavelet channel coding algorithm presented in [42] provides
error correction in additive white Gaussian noise burst noise and flat fading
channels. We have carried out simulations which verify these performance
gains.
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6 Appendices

6.1 About Aware, Inc.

Aware, Inc. is a mathematical engineering company that designs and sells
software and chipset products for bandwidth management. Aware’s prod-
ucts organize and compress signals such as images and video, audio and
speech, for storage and communications applications. Based on the power-
ful new wavelet mathematics, which provides superior signal representation
and hierarchical data structures, Aware accomplishes this by compressing
the amount of computation and storage needed to represent the signal, and
managing the compressed data stream to create breakthrough products for
satellite communications, teleconferencing, video editing and distribution,
computer multimedia systems, mobile radios, cellular telephones, and secure
communications.

The Changing Communications Environment

A revolution in information processing has been made possible by new t-
elecommunications and computing technology. Digital formats enable com-
puter generated pictures and sound, and conventionally generated photograph-
s, video, audio and speech communications to be modified by computer edit-
ing and to interchangeably share the same storage media and communications
channels. The boundaries between markets that were once distinct and in-
dependent are blurring, and product lines are overlapping. Companies are
evolving new types of organization and skills to respond to the new commu-
nication synthesis.

Bandwidth Management

The common denominator of digital computing and digital telecommunica-
tions is bandwidth. Bandwidth is the measure of how much information can
be transmitted or stored by an information system. It is the fundamental
scarce resource whose value is reflected in technology trends and produc-
t pricing. The need for more communications, more information storage,
and more computing resources in business and consumer products is press-
ing against bandwidth scarcity. Bandwidth management is the key tool for
enabling new products, and for achieving higher productivity and profits
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from existing systems.

Bandwidth can be increased by using more expensive technology: su-
percomputers, large disk drives, higher frequency communications carrier
signals. Each of these methods increases the amount of usable bandwidth.
Or, the available bandwidth can be used more efficiently by compressing the
source information.

Compression reduces the amount of bandwidth required to do the task.
Compression doesn’t depend on the technology of computers or storage media
or communications equipment: it just reorganizes the information that the
customer uses in a much more efficient way.

6.2 Government contracts related to this contract

During the period of this contract, other DoD contracts that depend on it
were awarded to Aware. They include:

e Spread Spectrum: Subcontract to Atlantic Aerospace Electronics Cor-
p., based on Aware’s wavelet channel coding technology (Contract No.
AAEC-1214.046-91-001).

e ONR Wavelet Transform Chip: Design and fabricate a wavelet trans-
form processor chip to demonstrate VLSI wavelet technology (Contract
No. N00014-90-C-0167).

e ONR Parttial Differential Equations Research: (Contract No. NOOO14-
91-C-0086).

6.3 Aware reports and presentations supported in
part by this contract

6.3.1 Reports and publications supported in part by this contract

The following is a list of technical reports whose preparation was supported
in part by this contract.

e R. Glowinski, “Note on a Multiplier-Fictitious Domain Method for the
Numerical Solution of the Dirichlet Problem,” Aware Technical Report
(1990)
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e R. Glowinski, W. Lawton, M. Ravachol and E. Tenenbaum, “Wavelet
Solution of Linear and Nonlinear Elliptic, Parabolic and Hyperpolic
Problems in One Space Dimension.” in Proceedings of the 9th Inter-

national Conference on Numerical Methods in Applied Sciences and
Engineering SIAM, Philadelphia (1990)

Heller, P. N. “Higher multiplier Daubechies wavelets,” Aware Technical
Report AD910614 (1991).

Heller, P. N. “A construction of higher multiplier wavelet matrices”,
Aware Technical Report AD910728 (1991).

Heller, P. N. “Polynomials are generalized eigenfunctions of the wavelet
transform,” Aware Technical Report AD910912 (1991).

Heller, P. N. “Polynomials are generalized eigenfunctions of the wavelet
transform,” Aware Technical Report AD910912 (1991).

Heller, P. N., Resnikoff, H. L., and Wells, R. O. Jr., “Wavelet matrices
and the representation of discrete functions”, to appear in Wavelets: a
tutorial, C.K. Chui, ed., Academic Press, 1991.

Heller, P. and Resnikoff, H. L., “Polynomials are generalized Eigenfunc-
tions of the wavelet transform,” Aware Technical Report AD910912.

Heller, P., “Higher rank Daubechies wavelets - Preliminary report,”
Aware Technical Report AD911204.

Huffman, J. C., Zettler, W. and Linden, D. C. P., “Applications of
compactly supported wavelets to image compression,” Proc. SPIE,
vol. 1244, pp. 150-160, (1990).

Jagler, K. B. and Morrell, W., “The application of multiresolution
wavelet techniques to interference cancellation problems”, Report to

MRJ (1991).

e Lawton, W., “Tight frames of compactly supported affine wavelets”,
Aware Technical Report AD891012.
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e Latto, A. and Tenenbaum, E., “Compactly supported wavelets and the
numerical solution of Burgers’ equation,” C. R. Acad. Sci. France,
Série I, pp. 903-909 (1990).

e Lawton, W., “Necessary and sufficient conditions for constructing or-
thonormal wavelet bases,” J. Mathematical Physics, vol. 32, pp. 57-61
(1991).

e Lawton, W., “Tight frames of compactly supported affine wavelets”,
Aware Technical Report AD891012, (1989).

e Lawton, W. and Resnikoff, H. L., “Multidimensional wavelet bases,”
Aware, Inc., Technical Report No. AD910130 (1991).

e Pollen, D., “SU,(2, F[z,1]) for F a subfield of C,” J. of the Amer.
Math. Soc., vol. 3, pp. 611-624, (1990).

e Pollen, D., “Parametrization of compactly supported wavelets”, Aware
Technical Report AD890503.4.1 (1989).

¢ Pollen, D., “Linear one-dimensional scaling functions”, Aware Techni-
cal Report AD900104 (1990).

e Pollen, D. and Linden, D., “Quadratic one-dimensional

o Resnikoff, H. L., “Wavelets and adaptive signal processing,” to eppear
in SPIE International Symposium Proceedings, Vol. 1565, Adaptive
signal processing, October, 1991.

o Resnikoff, H. L., “Wavelets and adaptive signal processing,” Optical
Eng. 31(6), June, 1992.

o Resnikoff, H. L. and Wells, R. O., “Wavelet analysis and the geometry
of Euclidean domains”, J. of Geometry and Physics, vol. 8, pp. 273-282
(1992).

o Weiss, J., “Wavelets and the dynamics of enstrophy transfer in two
dimensional hydrodynamics,” Aware Technical Report, in progress,
(June, 1990).
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e Weiss, J., “The long term limit of two-dimensional Euler flow,” Aware
Technical Report AD911029.

o J. Weiss, “Wavelets and the Study of Two Dimensional Turbulence,” in
the Proceedings of the French-USA Workshop on Wavelets and Turbu-

lence, Princeton University, June 1991. Y. Maday, Ed. Springer-Verlag,
NY.

6.3.2 Related reports

The following report was largely prepared by Aware under subcontract to
Martin-Marietta. It reports work based on research supported by the con-
tract for which present document is the Final Report.

e Stirman, C., “Applications of wavelets to radar data processing,” Final
Technical Re: .~ under DARPA Order No. 7450 monitored by AFOSR
under contract No. F49620-90-C-0050. Martin-Marietta Electronics,
Information, and Missiles Group, July 1991.

6.4 Wavelet technology in the popular press

Articles on wavelet technology that have mentioned Aware’s contributions
based on work supported by Darpa include:

Business Week, Dr. Dobbs Journal, EE Times, Radio-Electronic
Times, Science, Scientific American, The Boston Globe, The E-
conomist, The Los Angeles Times.

6.5 Lectures and presentations supported in part by
this contract

The following is a selection of presentations made with partial support from
this conytract:
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Preface

This monograph is intended to provide the reader interested in mathemati-
cal engineering with an informal tour of the theory of compactly supported
wavelets, its applications, and what it tells us about the relationship be-
tween the discrete and the continuous in mathematical models of physical
systems.

Its content is largely based on the work of my present and past coileagues
at Aware, who are in large measure responsible for the many results it
contains. I of course assume all responsibility for errors (of omission as well
as commission) but in this instance I could not have made some of those
errors without their help! The book also is indebted to other explorers of
the vast new territory that the concept of compactly supported wavelets has
revealed. I have acknowledged their contributions where they have played
a part in the story I have to tell.

I am pleased to express my appreciation to my former colleagues Wayne
Lawton, David Pollen, David C. Plummer (Linden) and Eric Tenenbaum,
whose early and fundamental contributions to the development of wavelet
theory at Aware have profoundly influenced the way I think about the
subject, and to Ramesh Gopinath and Professors C. S. Burrus and Roland
Glowinsky for their insights and stimulation during their extended visits to
the company. Discussions with Professor Louis Auslander during a period
of more than three years stimulated the author’s mathematical imagination
and introduced Aware to the potential of wavelets for channel coding.

Special thanks are due to Jonathan Devine, Peter Heller, John Huffman,
Karl Jagler, William Morrell, Richard Tolimieri, Michael Tzannes, John
Weiss, and Bill Zettler, and to my friend and colleague Ronny Wells, all of
whom will recognize their hands (and heads) throughout this k-ook, and to
the rest of the staff of Aware whose contributions to this book have been
considerable even though they may be less visible.

I am particularly grateful to Christina Gorecki who kept the unruly
team of Tex,© Matheinatical® a- 7 .h- Macintosh operating system hitched
together and more or less pulling 1. a common direction as a sideline while
she performed her real duties.

Aware, Inc. is indebted to the Defense Advanced Research Projects
Agency for its far-sighted support which enabled Aware to explore fun-
damental issues at the interface of mathematics and computation in the
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context of developing practical solutions to difficult and important prob-
lems. We believe that this partnership of common interests between small
commercial companies and government agencies, between mathematicians
and engineers, and between theory and practice will be the paradigm for
developing advanced technology in the twenty first century.

Collected below are certain symbols used in the text.

The integersZ := {...,-2,-1,0,1,2,...,n...}.

The rational numbers Q := {m/n whete m,n € Z and n # 0}.

The dyadic rationals D := {q/2" : ¢ € Z an odd integerand n € Z}.
The real numbers.

The complez numbers.

L?(R)  The space of finite energy signals on R.

L?([0,1]) The space of finit. energy signals on the interval [0, 1].

lgz The base 2 logarithm of z.

OICON

The imaginary unit is i := /1.




Figure 1: Aware’s logo. The square is a map of the two dimensional pinched
torus parameter space of six coefficient wavelet matrices. The curves are the
loci of wavelet matrices that correspond to wavelet bases that are formally
differentiable of order 1.
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Figure 2: One dimensional row-transformed Lenna image employing the
D3 wavelet basis. Lenna was the centerfold in the November 1972 issue of
Playboy. This image, digitized from the original, has become a standard in
the image processing community, which usually, but incorrectly, identifies it
as “Lena.” Today Lenna is also known as “NITF-6" in the National Image
Transmission Format test image suite.
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Chapter 1

The New Mathematical
Engineering

1.1 'Trial and Error in the 21st Century

A fundamental break with the past occurred during the last forty years.
Each of us is now dependent on technology for sustaining not only our style
of life but possibly our life itself. Today nations and corporations under-
take projects whose scale and complexity were undreamt merely a genera-
tion ago. People depend on products their grandparents would have called
miracles, and they expect the marketplace to provide levels of performance,
safety, and affordability that require advances all along the convoluted fron-
tier of science and technology.

Before this break with the past, most large undertakings differed in
degree, but not in kind, from what had previously been tried and mastered.
New products were tested in the laboratory and industrial processes were
scaled up from laboratory trials.

Improvement by trial and error served past generations well, but it
cannot serve the future. Today, design and manufacturing antecedents that
provide insight into the long term consequences of large scale projects are
usually lacking. The trans-Alaskan pipeline, landing explorers on the moon
and bringing them home, assessing the crashworthiness of new automobiles,
and finding the optimal shape for the wing of a jet transport are problems
that cannot be solved by trial and error or by scaling up the results of
affordable small scale tests.

Today, testing the real thing is often too costly, too time-consuming, or
just too complicated to be practical. More and more often, when a project

21
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involves human health, or the interdependence of human well-being and the
well-being of the environment, testing the real thing may not be possible.

Development by trial and error was suited to the time when technology
was in its infancy. That approach is no longer adequate. The need to pre-
dict performance and consequences, and to optimize design for safety, qual-
ity, and cost have become key competitive and social factors for industrial
economies. These factors call for new tools suited to these new problems.
One important new tool for predicting performance and optimizing design
is mathematical engineering.

1.2 Mathematical Engineering

1.2.1 Active Mathematics

Traditionally, mathematics only played a role in the earliest stages of en-
gineering design. Mathematics was used, for example, to prescribe the
arrangement and strength of the parts of a structural bridge design, or the
shape and size of a wing that would meet the design objectives for lift, or to
test the electrical characteristics of a layout for a2 VLSI chip design. Once
the design was complete, the role of mathematics was played out.

Today, the digital computer and the VLSI chip have created a new
role for mathematics in technology. Mathematical algorithms can now be
directly embodied in products, so that every time the product is used, the
algorithm is working. This aclive mathematics enables totally new classes
of products, from the cellular telephone, where an algorithm in the form of
channel coding protects the message from the distortions of noisy channels,
to compact audio discs, where error correction coding insures the fidelity
of music despite dust and imperfections of the recording medium. This
new kind of use of mathematics will have an increasingly profound impact
on adaptive process controls in manufacturing and on real-time dynamic
controls in products — from automobiles and airliners to electronic pocket
organizers — that are used by everyone.

Active mathematics calls for a new approach to the use of mathematics
in engineering -~ a new mathematical engineering — that employs a sys-
tems approach to problems where mathematical process models, efficient
algorithms for computer numerical solutions, and area-efficient VLSI imple-
mentations for portable and computation-intensive real-time applications
are efficiently combined to yield an integrated solution.
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1.2.2 The Three Types of Bandwidth

Communications Bandwidth

Bandwidth is usually thought of in the context of broadcast communica-
tions, where it is the physical means by which a radio or television signal
carries information. In the United States, the available spectrum is allo-
cated by the Federal Communications Commission (FCC) for signals that
propagate through the atmosphere. Although bandwidth is an abstract
concept that many people find difficult to understand, from an economic
point of view bandwidth acts like a commodity. Like any other commodity,
bandwidth can be plentiful or scarce relative to the need for it. With the
growth of telecommunications and computing, communications and elec-
tronic storage bandwidth have become increasingly scarce commodities.

Information Storage Bandwidth

Information that is stored on a disk drive or any other storage medium also
consumes bandwidth, but in this case the storage bandwidth that the device
uses is built into the product in the form of the physical storage medium.
For a fixed technology, the price of the product will generally increase with
the storage bandwidth it provides. The user pays for the bandwidth.

Computational Processing Bandwidth

Every computer has a computational bandwidth which is roughly propor-
tional to the number of operations it can perform per second. Computa-
tional bandwidth is really a measure of the amount of computation that
a computer can perform per unit time. The difference between these two
definitions depends on the efficiency of the algorithms that are employed.
Processing bandwidth is not strictly independent of communications band-
width and storage bandwidth because a computer combines logical process-
ing operations, communication with its internal memory, and intermediate
storage of information in registers as components of the computational pro-
cess.

These three types of bandwidth — communications bandwidth, snforma-
tion storage bandwidth, and computational processing dbandwidth - are three
aspects of one fundamental concept.
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Table 1.1: Spectrum allocation in the United States
Frequency Band | Designation Propagation Typical Uses
(kHz) Characteristics
3x10°=-3 x10° | VLF Submarine communications
3x10*-3x10° |LF Long-range navigation;
Marine communications
3x105-3x10° | MF Atmospheric noise. | AM broadcasting;
Emergency frequencies;
Maritime radio.
3x106-3x10" | HF Ionospheric Telephone; Facsimile;
reflection Aircraft and ship comm,;
International broadcasting;
Military communications
3x10" -3 x10® | VHF Near line-of- VHF television;
sight; scattering. FM two-way radio;
AM aircraft comm.
3 x10% -3 x10° | UHF Line-of-sight. UHF television;
Radar;
microwave links.
3 x10° - 3 x 10!1° | SHF Line-of-sight; Satellite communications
Rainfall attenuation. | Radar.
3 x 1019 -3 x 10!! | EHF Water vapor Radar;
absorption. Satellite communications
1012 — 1016 Infrared, Optical communications.

Visible Light,
Ultraviolet

‘
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1.2.3 Communications Bandwidth: Mathematical En-
gineering for Channel Coding

Digital signal processing for communication is one of the areas where wavelet
technology is making a difference.

Communication always involves a sender, a receiver, and a “communi-
cations channel,” which is a means for transmitting the signal. A conver-
sation, a radio broadcast, a cable TV program, a person reading a book,
a person typing on a computer keyboard, and a computer transferring in-
formation to a hard disk are all examples of communication. In each case,
information is transmitted by modifying something physical that can inter-
act with both the sender and the receiver. For instance, speaking causes
small systematic pressure variations in the air between the speaker and the
hearer, which the hearer’s ear translates or “decodes” into a stream of ner-
vous impulses that are transmitted to the brain. The pressure variation of
air is the communications channel for transmitting the speech signal. The
air between the speaker’s mouth and the hearer’s ear can be thought of as
the “carrier” of the speech signal; the small pressure variation caused by
speaking “modulates” the carrier to encode the information signal on it.

Channel

For broadcast radio and TV, the channel is the electrical variation of an
electromagnetic wave broadcast from the transmitter tower. The electro-
magnetic wave is the carrier. The small electrical variations that represent
the information signal modulate the carrier by changing its physical prop-
erties. Amplitude modulation, used for AM radio, modifies the energy of
the electromagnetic carrier wave, while frequency modulation, used for FM
broadcasts and TV, modifies its frequency.

Noise

While a signal is passing from the source to the receiver, it is at the mercy of
the surrounding physical environment. A lightning flash will drown out an
AM radio signal just as a drum roll will drown out speech. The information
signal is still there, but it is masked by the larger signal and cannot be
detected by the receiver, just as the ear cannot detect a softer tone masked
by a nearby louder one. “Noise” is simply an unwanted modulation of the
carrier whose presence interferes with detection of the desired signal. One
person’s noise is another person’s signal. The boom boxer thinks the nearby
conversation is noise. Other people’s conversations audible on a telephone
line are usually placed into the noise category. The telephone company
calls this “co-channel interference.”
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Noise - interference — is always present in every communications chan-
nel, and it corrupts every communication. It causes the receiver to make
errors in decoding the transmitted signal. These channel errors limit the
efficiency of the communications system.

Channel Capacity

Every communications channel can transmit a certain amount of infor-
mation but no more. The number of bits per second that a channel can
transmit is called its channel capacity. Channel capacity decreases as the
amount of noise increases, and it increases as the amount of energy used to
modulate the carrier increases. For radio channels, the channel capacity is
proportional to the channel’s frequency bandwidth. Bandwidth is another
name for channel capacity, and channel coding is an important part of a
strategy for managing bandwidth efficiently.

The notion of channel capacity is very general and can be used to de-
scribe any communications system. Commercial airline traffic supplies an
easily understood example. The travelers on the airplane represent the in-
formation bits and the aircraft is the carrier. The route through the sky
is the channel. In regulated international air travel, airline routes are a
valuable commodity. Increasing the number of flights between two airports
is one way of increasing channel throughput to increase revenues. The ca-
pacity of the channel is determined by how many aircraft can occupy the
route at the same time.

Channel Coding

We will pursue this example further. The number of airplanes that could oc-
cupy the routes between, for example, Boston and London, is much greater
than the number that are permitted to fly, because government regulations
require aircraft to maintain a minimum separation in both space and time.
This minimum distance guarantees reliable air travel. It is a form of channel
coding.

A communications link needs to be reliable. The importance of the
information being transmitted determines how. Reliability is usually mea-
sured by the average bit error rate, i.e., the number of bit errors that, on
the average, are tolerable for the application. For radio communications,
links employing digital data, an error rate of one in every ten thousand bits
may be acceptable. In the case of airplane travel, no error — no loss of life
- is acceptable, so the distance between airplanes in flight is kept relatively
large.
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Cars traveling on a road maintain as great an inter-car distance as air-
planes in flight. Less distance between them is required because the road
channel is “less noisy” (events happen more slowly), and the consequences
of an occasional error are usually not catastrophic. The distance between
vehicles, although it wastes part of the channel capacity, is needed to main-
tain “reliable communications.”

Channel coding is a sophisticated means of placing distance between
information signals by putting redundency in the information. This is the
only way to avoid or correct errors that arise from channel noise.

1.2.4 Information Storage Bandwidth: Mathematical
Engineering for Compression

There are two kinds of compression — “lossless” and “lossy”.

Lossless Compression

Losslecs ¢ :mpression is sumetimes called “arithmetic coding” or “entropy
coding” b-_.ause it never destroys information. Lossless compression merely
removes tlie redundancy in a signal. Since it never destroys information, the
original signal can be exactly reconstructed from the losslessly compressed
version. But most signals do not have very much redundancy. This limits
the effectiveness of lossless compression which, for gray scale images, tends
to produce compression ratios of only 2- or 3- to -1 [44].

Lossless compression is like compressing a gas in a cylinder by means
of a piston: all the gas molecules are still there, and the gas returns to its
original condition when the pressure is released by withdrawing the piston.
The compressed gas requires a smaller volume to store the same number
of gas molecules. The cost of compression and subsequent decompression
when the gas is used is repaid by the savings that are byproducts of the
reduced volume for shipment and storage.

Lossless compression of information works the same way. Information
expressed in digital form as a sequence of bits can be reorganized so that
the same information can be expressed in terms of fewer bits by removing
the redundancy. The compressed format is usually not directly usable;
when the information is used, it will be wanted in its uncompressed form.
The cost of lossless compression and decompression must be repaid by the
savings that are byproducts of the smaller amount of storage or transmission
time required by the compressed information if lossless compression is to be
commercially worthwhile. Lossless compression is used when it is important
to be able to reconstruct the signal exactly; no errors are permitted. The
use of lossless compression for financial data records is a typical application.
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The critical difference between compressing a gas and compressing in-
formation is that there is a limit to how far information can be losslessly
compressed. The amount of information in a signal is the number of bits
that are needed to express the information in its most compressed form.
If the signal is compressed further (e.g., by throwing away some of the re-
maining bits), then some information present in the original signal will be
lost.

Lossy Compression

Lossy compression selectively discards less important information from the
signal. This permits much higher compression ratios and often - it depends
on the application — there will be little or no perceptible difference between
the original signal and the signal constructed from the compressed version.
Lossy compression for full color still images can be 30 times as great as
lossless compression without producing significant distortion. This is pos-
sible because images typiczlly contain “noise” and other details that are
subliminal and therefore not perceived by the yiewer. Speech, sound, and
imagery can all be compressed by lossy compression to a far greater degree
than by lossless compression.

Lossy compression discards “less important” information. The critical
feature of a lossy compression method is the way it decides which informa-
tion is important. The decision generally depends on the application, but
for sensory data like speech, sound, and imagery, all of which are processed
by people, there are similarities that make it possible to design compression
algorithms that have a common general structure.

1.2.5 Computational Bandwidth: Mathematical Engi-
neering for Manufacturing

Some of the most demanding applications for mathematical engineering are
problems of manufacturing. Shortening product design cycles and improv-
ing the performance of manufactured products are necessary for economic
competitiveness. They directly affect manufacturing costs and the ability to
be responsive to changes in consumer taste, the two short-term factors that
determine profitability. The health and safety effects of products will be-
come increasingly important as products becorne ever more complex. Other
things being roughly equal, economies and companies that are able to lead
in these aspects will be more successful than those that cannot.

It is not easy to shorten design time and improve product performance
because today’s manufactured products are much more complex than those




The New Mathematical Engineering 29

of just a few decades ago. From an inexpensive television set to a multimil-
lion dollar gas turbine jet engine, most manufactured products are now too
complicated for old fashioned design procedures. The old procedures cost
too much; they take too long; and they are incompatible with interactive
performance simulation that is necessary to optimize designs for reduced
manufacturing cost and increased quality.

The traditional role of mathematics in engineering design and its new
active role in product operation can be combined by interactively using
computer-implemented mathematical simulations to analyze and improve
product performance. Although the computer is already a principal tool in
many industries, and has been used to make great strides in organizing and
controlling manufacturing processes, its interactive use to optimize product
design and reduce design cycle time is still untapped.

At the heart of the product design process is the ability to represent
the operation of a product by a mathematical process model. The pro-
cess model] underpins the ability to simulate performance by “running” the
mathematical model on a computer.

If a mathematical simulation is to be useful for design, it must be accu-
rate and fast; if it is to be practical, it must run on inexpensive computers.
Typically, the most difficult and costly part of mathematical simulation for
manufacturing involves nonlinear processes, like combustion, fluid flow, and
forming metals and plastics. In this context, the mathematical description
usually consists of a collection of partial differential equations that model
the physical properties of the product. The numerical solution of these
equations describes the changes that occur as the product performs its
function.

Although the speed of computers will continue to increase in the coming
years, this, by itself, will not be sufficient to put the power of interactive
simulation in the hands of every product design and manufacturing engi-
neer who could benefit from it. Unless the product is very expensive or
the number of units manufactured is very large, most companies cannot
afford the cost of the powerful computer or supercomputer that would be
needed to provide accurate and timely simulation results if the the current
generation of simulation techniques are used. This means that in a period
of increasing product customization, the vital “middle class” of the manu-
facturing sector that consists of medium sized engineering companies will
not be competitive.

Affordable solutions to the interactive design problem are likely to be
based on a combination of new and more accurate mathematical models for
representing the product’s operation, and more accurate and more stable
numerical methods for solving the resulting differential equations quickly
enough to support interactive design solutions. These advances would en-
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able simulations that can reduce the time to solution, be applied to cases
where conventional methods fail, and are interactive and economical.

1.3 Are Breakthroughs on the Way?

Is there a scientific basis for the breakthroughs that will be required to
support active mathematics in complex products and for interactive de-
sign? We believe there is. The mathematical theory of compactly sup-
ported wavelets was discovered just a few years ago, but wavelet numerical
solution of nonlinear differential equations has already demonstrated its
potential, and wavelet-based active mathematics have already shown their
ability to support dynamic bandwidth management for digital communica-
tion, storage, and high quality compression of audio and imagery.

Nonlinear and transient physical phenomena that exhibit nonlinear be-
havior such as combustion processes in an automobile engine, or air flow
over a turbine blade in a jet engine are difficult to simulate. Systems like
these exhibit shock behavior, with turbulence and detailed structure at
many levels of resolution. Conventional numerical procedures require very
fine meshes and very small time steps to insure the accuracy of numerical
solutions, although they do not insure that the numerical procedures will be
stable, or produce accurate results. Wavelet numerical solutions, however,
are well suited to these types of problems. They are able to capture the
behavior of complex, nonlinear dynamical systems with an accuracy and
speed not possible with known alternative techniques.

In this book we introduce the reader to the ideas that lie behind the
theory of compactly supported wavelets. We relate them to previously
known methods in mathematics and engineering; show how they can be
practically used in a digital signal processing and computing environment,
and illustrate their potential for mathematical engineering by describing
successful applications in bandwidth management.




Chapter 2

Good Approximations

“An addition to knowledge is won
at the expense of an addition to ignorance.”
—Arthur S. Eddington !

2.1 Approximations and the Perception of
Reality

Every measurement, whether the naked result of an impression on the hu-
man eye or ear, or the result of a sophisticated measuring instrument, is
merely an approrimation. We can know, and our computing machines can
know, only a finite number of decimal places in the numerical representa-
tion of a distance or a weight or a force or a temperature.? The eye has
limited resolving power, the ear a limited frequency response, and this is
true for all instruments whether biological or “mechanical.” This limita-
tion is not merely due to poor “manufacturing technique;” as Heisenberg’s
Uncertainty Principle tells us, it is inherent in the essence of things. Life
and the universe depend on approximations. And so, too, does technology.

The certainty of error in every measurement and every physical inter-
action emphasizes the importance of knowing how accurate a particular
approximation happens to be. If aa approximate value is accurate enough
for the purpose in hand, it is “good.” Other things being equal, a bet-
ter approximation is preferred to a worse one. How good is a particular
approximation? For a fixed expenditure of computational resources, mea-
surements and analyses expressed in terms of compactly supported wavelets

1No)
21t follows that every measured or explicitly computed number is a ratione! number.
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Figure 2-1: Continuous ramp transient.

give better approximations to speech signals, turbulence and other tran-
sient or localized phenomena than conventional methods. Here is a simple
example: consider a time series that describes a quantity that is zero for a
long time; ramps up linearly to a maximum value; and falls instantaneously
to zero where it remains. Such a signal is shown as the smooth curve in
figure 2-1.

Suppose this signal is sampled at 55 uniformly spaced times. The sam-
ple measurements can be used to construct a Fourier series expansion of
the signal; if all 55 measurements are used, then the Fourier series will
have 55 terms and it will perfectly reproduce the measured numbers. It
will also interpolate values for unmeasured instants. However, if fewer than
55 terms are used, then the partial series will produce an approximation
of the measured values. The figure shows the approximate values pro-
vided by a 27 term Fourier expansion. Figure 2-3 shows a 27 term wavelet
series approximation. These figures display two important properties of
wavelets: Wavelet series approrimate abrupt transitions much more accu-
rately than Fourier series and Wavelet series perfectly reproduce constant
measurements. Wavelets produce better approximations but a wavelet ap-
proximation doesn’t cost more to calculate than an ordinary approximation.
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Figure 2-2: Fifty-five point ramp transient: 27 term Fourier series approx-
imation.

Figure 2-3: Fifty-five point ramp transient: 27 term D3 wavelet series low
pass approximation.
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2.1.1 Efficient Mathematical Models

We can expect wavelets to provide better approximations when the data
exhibit localized variations, but when the data vary regularly and smoothly
other more traditional representations may be better. For instance, if a
violin string is plucked, most of the energy will be concentrated near the
plucked point for a short period of time — here, the wavelet series will
provide an accurate and economical appraximation. But as time passes,
the energy of the pluck will spread along the string and be distributed
among the normal modes of oscillation, which are sinusoidal. After a while,
a Fourier series will provide a more economical approximation.

This example shows that it is important to know how to use wavelet
approximations and traditional approximations in the same problem.

Compact support

One reason that wavelets provide good approximations for transient or
localized phenomena is that each basis function — each term - in a wavelet
series has compact support and, no matter how short an interval is, there
is a basis function whose support is contained within that interval. The
intuitive meaning of this property is that compactly supported wavelet
basis functions can model local behavior efficiently because they are not
constrained by properties of the data far away from the location of interest.

This feature of compactly supported wavelets also makes it easy to con-
cenirate compulation where the activity is high.

Compactly supported bases lead to inherently parallelizable algorithms.
Aware’s collaborators at Rice University recently demonstrated that wavelet
methods for the numerical solution of a class of nonlinear partial differential
equations could be run on a massively parallel computer with little change
in the algorithm or program design. They led to an efficient use of the
parallel computer, and an accurate solution of the problem.

Orthogonality

The terms in a wavelet series are orthogonal to one another, just like the
terms in a Fourier series. This means that information carried by one
term is independent of information carried by any other term: there is no
redundancy in the representation.® This is good because it means that

3More precisely, there is no redundancy with respect to the L?(R) norm in terms of
which orthogonality is defined. There may be other types of relationships among the
coefficients of a wavelet expansion that would permit a further reduction of redundancy,
but they would lie outside the realm of square-integrable arthogonality. This is a general
question that has nothing in particular to do with wavelets.
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neither computing cycles nor storage are wasted as a result of coefficient
redundancy when a wavelet series is calculated or stored.

Multiresolution representation

Biological sensory systems, such as vision, and many physical systems are
organized into “levels” or “scales” of some variable, just like organizational
and economic structures, and the positional notation of arithmetic. In
this sense, a multiresolution or scalable mathematical representation may
provide a simpler and more efficient representation than conventional math-
ematical representations. We delve more deeply into this basic concept in
the next chapter.

2.1.2 Computational Complexity

Crmputational complexity is a measure of the number of elementary oper-
ations need to solve a computational problem. Computational complexity
ir indirectly a measure of time to solution for a given computing system
as well as a measure of the cost of solution. Therefore the computational
complexity of the numerical solution of a problem is a critical factor in
deciding whether a proposed solution method can be practical.

Problems of design or active operation use measured data as an input. If
the problem requires N data points, then the computational complexity of a
sc'ution must be at least O(N), since reading the data into the computer is
already an O(N) operation; this is the best that can be done. Conventional
mathematical operations, such as matrix multiplication or calculation of
tre finite Fourier transform, have been superseded by “fast” algorithms
that make their use practical. Thus, the complexity of the fast Fourier
transform is only O(N log N), compared with O(N?) for the conventional
finite Fourier transform.

We shall see that wavelet transform operations are typically - O(N) -
asymptotically the best that could be hoped for.

It is possible to reduce computational cost without reducing compu-
tational complexity. If one method produces much better approximations
than another, then fewer data points will be required to provide the de-
sired solution accuracy. Reduction in the quantity of data is often a more
important practical factor than the abstract complexity of a calculation.
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2.2 Information Gained from Measurement

Immediately* upon its invention, the digital computer was recognized as an
entirely new kind of machine whose major influence would be on information-
intensive activities — the life of the mind — rather than on energy-intensive
activities, which had been the case for all previous machine inventions. In a
prescient analysis in 1948 of the potential effect of computers on the social
and economic structure, Norbert Wiener ([73], pp.27-28) drew attention to
the distinctive and unprecedented role of this machine at the level of mind.

Today, the digital computer dominates the scene in psychology and
biology as the principal metaphor for the operatioa of the brain® and some
physicists and computer scientists have argued that the physical universe
itself can best be understood and modeled as an enormous digital computer
whose evolution represents the working out of a program the source and
purpose of which remain unknown.

Thus it is not surprising that the word information has taken on special
meanings in all phases of everyday life as well as in science and philosophy:
we speak of and hear about information age, information glut, information
management, information overload, information society, information tech-
nology, information theory, and information workers without end. These
modifications of vocabulary merely reflect the now universally recognized
truth that information is a fundamental constituent of the world that in-
teracts with such traditional and immediately physical constituents such as
the mass and charge of material bodies, and space and time as the stage on
which natural philosophy plays [49). Nevertheless, philosophers and ccien-
tists no less than economists still have great difficulty in identifying exactly
what information is, how it interacts with the other constituents of physical
or societal reality, how to quantify it in the national as well as the natural
accounts, and even how to recognize it.

In this section we will examine the role of information at the fundamen-
tal level of measurement, which is the interface between science and experi-
ence, and calculation, which we think of as the interface between measure-
ment and mind. We ghall see that a multiresolution or scaled representation
is the essential ingredient for extracting information from observations.

4This section is a modified version of [50).
5This metaphor has been implicitly adopted by art historians in their analysis of the
role of the psychophysics of vision. A standard presentation is Gombrich [16].
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2.2.1 Digital Computers and Measurement

A binary digital computer deals directly with dyadic rational numbers, that
is, with numbers of the form

N
r=4% on
where ¢ is odd or zero and n is an integer. Moreover, any operation that
a digital computer can perform can be thought of, or encoded as, a finite
sequence of bits — of zeros and ones - and hence as a particular binary
expansion of a dyadic rational number. Thus the entire realm of digital
computers is limited to the ring D of dyadic rationals.® Moreover, every
reading produced by a measuring instrument is a rational number and, if
the instrument is constrained so that the bits in the binary expansion of
a measured value can be read off one by one, then the instrument only
produces dyadic rationals’ Thus, direct observation of the physical world
can only produce numbers of exactly the sort that a digital computer can
use.

Until recently, when one spoke of using matkematics to model natural
phenomena, one meant the calculus. The ideas that underlie the calcu-
lus were systematically introduced in the late seventeenth century and the
principal properties of derivatives and integrals were obtained by means of
informal arguments that employed infinitesimal quantities. Leibniz recog-
nized that the introduction of infinitesimals implied the existence of ideal
infinitely small and infinitely large numbers that share the properties of
the ordinary real numbers and, although mathematicians were unable to
justify the use of these ideal numbers — indeed, the real numbers themselves
were not fully understood until the late nineteenth century - infinitesimals
were freely used in research and in mathematics education, as they still
tend to be used in engineering and other branches of applied mathematics

¢ A ring is a mathematical structure in which addition, subtraction and multiplication
can be performed. If division by every non-zero element is also possible, mathematicians
call the structure a field. The reader will note that a reciprocal of a dyadic rational is
not in general a dyadic rational. This is why the numbers known to a computer do not
form a field. A rational number is one of the form m/n where m and n are integers and
n # 0. The set of all rational maumbers, denoted Q, is the smallest infinite field and the
ring D is contained within it.

This argument is not strictly correct. The computer can represent an integer by
its finite binary expansion, which is a dyadic rational number. Therefore, an arbitrary
rational number can be identified with the ordered pair of dyadic rational integers that
are the numerator and denominator of the rational number in reduced form. Similarly,
algebraic numbers such as V2,17, etc., can be coded by finite sequences of integers,
wtheymnhobecxpmnedex.ctlymndnouleanpma A measuring apparatus,
however, cannot usually be arranged to measure the numerator and denominator of a
rational number separately.
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today. As Abraham Robinson [51] observed, “The idea of the infinitesi-
mally small seems to appeal to our intuition.” It was not until 1960 that
infinitesimals were put on a sound logical basis by Robinson’s introduction
of non-standard analysis, which relies on the modern theory of models in
mathematical logic to introduce a structure that extends the field R of
real numbers to include an infinite hierarchy of infinite and infinitesimal
numbers in a way that insures the validity of first order predicates in the
extended system; cf. [51]. This extension provides a kind of multiresolution
analysis for infinite and infinitesimal quantities.

The kinds of numbers that seem to be needed for the theoretical math-
ematics of the calculus are evidently very different from the numbers that
are produced by direct observation of the physical world: measurements
are not unrestricted real numbers which, like the transcendental x, require
infinitely many bits to specify their binary expansion, and they certainly
are not one of Leibniz’ and Robinson’s infinitesimals. We appear to be
faced with two unpleasant alternatives: either real numbers (and possibly
infinitesimals) occur in the world but cannot be measured exactly (which
introduces an inherent uncertainty in measurement and in all deductions
based on measurements), or measurements reveal all that there is to know
(so that our mental models, dependent upon the real numbers and perhaps
even upon infinitesimals, are overdetermined: they contain far too many
constraints to accurately reflect the phenomena).

These remarks recall Kronecker’s century-old criticism of the “com-
pleted infinite,” that nothing could be said to have mathematical existence
unless it could actually be constructed in terms of a finite number of pos-
itive integers. In his view, the rational numbers exist since they can be
represented as the ratio of two integers but transcendental numbers like
x do not exist, since they require infinitely many fractions or operations
for their representation. Kronecker is thus the mathematician in whom
a digital computer can believe. He proposed a program to “arithmetize”
mathematics and eliminate from it all “non-constructive” concepts.® It is

8«And if | can’t do this,” he said, “it will be done by thase who come after me!™ ([48],
p. 26). Indeed, beginning in 1907, L. E. J. Brouwer put forward a program of “con-
structivist mathematics” but he made little headway among practicing mathematicians,
who were concerned that Brouwer’s views would unnaturally and unnecessarily limit the
development of mathematics. More recently, Bishop continued the attempt to “purge
{mathematics] completely of its idealistic content.” Hear Bishop ( [4], p.2):

Mathematics belongs to man, not to God. We are not interested in the
properties of the positive integers that have no descriptive meaning for
finite man. When a man proves a positive integer to exist, he should know
how to find it. If God has mathematics of his own that needs to be done,
let him do it himself.
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indeed time to reéxamine the relationship between mathematics and natu-
ral philosophy in the new light provided by the theory of computability and
in terms of the information that calculations and physical measurements
can actually supply.

2.2.2 Uncertainty and Natural Philosophy

During the past 100 years philosophy and science have conspired to teach
us the limits of reason and observation. The set-theoretic paradoxes of
Cantor and the logicians, Einstein’s elimination of absolute time and space,
Heisenberg’s introduction of uncertainty as the indispensable ingredient
in the microworld, and Gédel’s proof that mathematics and logic are not
strong enough to prove all that is true, limit what can be known. It may
seem paradoxical that this period of lowered expectations of what can be
known has coincided with the period of greatest expansion and precision of
what is known in mathematics and science. Evidently it is better to know
one’s limits than to thrash about in unfulfillable expectation.

It was during this period of intellectual ferment that probability and
statistics entered scientific thinking in a fundamental way. The concepts of
probability and information first influenced each other in the second half
of the nineteenth century in the work of Maxwell and Boltzmann on sta-
tistical thermodynamics, where entropy gain was associated with loss of
information. Boltzmann’s distribution for a thermodynamical system in
equilibrium defines an entropy measure which is equivalent to the informa-
tion measure introduced by Shannon [53] three-quarters of a century later
in the context of electrical communication theory.

At the macroscopic level there are circumstances in which it is possible
- in principle, at least — to isolate the information gained from a single
measurement without prior knowledge of, or reference to, probability dis-
tributions. Where quantum phenomena are concerned, the outcome of a
measurement is conditioned by the initial state of the system which, if it
is not pure — not an “eigenstate” - will be represented by a state vector in

Hilbert space, say
¥= Z ca¥a ,

where the ¢, are a system of eigenstates and the complex coefficients ¢,
define a probability distribution {p.} by the formula

Po = |°a|2 .

The number p, is the probability that measurement of the quantum sys-
tem will show it to be in the state labelled . It is the essence of quantum
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phenomena that systems cannot long remain in pure states, so measure-
ments cannot be sharp (von Neumann [39] treats this question in detail).
Shannon’s measure of information associated with the discrete probability
distribution {p,} is

I{pa}) = =) _ palgpa ,

where ‘Ig’ denotes the base-2 logarithm and information I is measured in
bits. The minus sign is introduced to insure that I is non-negative. If the
state of a quantum system prior to an observation is

initial — 2 cinitial gy
and its state subsequent to measurement is
yinel Z 62"‘111@ ’
then the information gain is
AT = I({leg™™ P} = {1 ) -

Quantum mechanics asserts that a measurement forces a physical system
into a pure state, which immediately begins to decay into a superposition
of states. Thus the “final” state, by which we understand the pure state in
which the physical system finds itself as an immediate consequence of the
measurement, is one for which exactly one of the coefficients cfi*® is not
zero, whence yfinal = s for some state §. It follows from the definition of
I that I({|cfr*|2}) = 0. Therefore the gain in information is measured by
the quantity

AI= I{Ieg™p)) = - E g ()

which is non-negative. This shows that a quantum mechanical measurement
will produce an increase in information as long as the initial state is not
pure.

Uncertainty is the part of life in the quantum world of which we have
no longer any doubt, but it is still not generally realized that quantum
uncertainty is inherited from the mathematical model that is used to de-
scribe the physical phenomena. So-called “conjugate” physical quantities,
such as position and momentum, or time and energy, correspond to linear
functicnals that are Fourier transform pairs. It is a mathematical fact that
a function (or functional) z ~ f(z) and its Fourier transform y — f(y)
satisfy the uncertainty inequality (cp. [49], pp.132-139):

1
AszZ 4—1’ .
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Here the physical interpretation of z and y will be that of conjugate dynam-
ical variables. If a measurement increases information about one quantum
mechanical dynamical variable by decreasing the uncertainty concerning is
magnitude, then the uncertainty principle requires that the measurement
increase the uncertainty about the magnitude of the conjugate dynamical
variable and thereby produce a corresponding loss of information.

2.2.3 Axioms for Measures of Information Gain

The goal of a calculation is to determine the value of some number within
certain bounds of accuracy. The information gained from the calculation
is therefore measured by the difference between the information about the
number that was known before the calculation began, and the information
known about the number after the calculation is completed. Since all that
the calculation can produce is some finite sequence of bits of the binary
representation of the number,® the gain in information must be measured
by the new bits that the calculation produces. Indeed, as Wiener [73]
may have been the first to observe, the measure of information gained is
just the number of new bits that the calculation produces. This raises an
important problem, for it means that it is impossible to know the exact
numerical value as a “real number” of any physical measurement because
a real number requires infinitely many bits for its complete specification.
Since the measurement of a bit and the calculation of a bit both require en-
ergy, the only way in which a numerical value could be determined exactly
from observations would be if the energy E, required to observe the n*® bit
in the binary expansion of a number were to decrease sufficiently rapidly
with increasing n that the infinite series Y E,, (which represents the total
energy required to observe the number) converged to a finite value. But
the consequences of such an assumption are contrary to experience. Even
if the observed numerical quantity were a rational number ~ even if it were
the number 1 — there would be no way to verify this by direct physical mea-
surement or observation of the bits of the number’s binary expansion. This
is a type of “uncertainty principle” which seems to be more fundamental
and universal than the principle of Heisenberg; indeed, the latter may be a
consequence of it.

At this point we must take stock of where we are and where we want
to go. Our immediate goal is to quantify the information gained from
a calculation, and to understand how the multiresolution structure of the

number system and the measurement process make this possible. Shannon’s

9For convenience, and without loss of generality, we may suppose that all pumbers
are represented in base 2 positional notation.
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measure of information will not do for this purpose since there is no natural
way to associate a probability distribution with either a calculation or a
limited number of measurements. But ad koc introduction of a new measure
of information will not do either. So let us return to first principles and
attempt to axiomatize the properties of a reasonable measure of information
gain, and then derive the quantitative form that information gain must
assume. We follow the discussion in [49)].

A prototypical physical measurement consists of determining the length
of a rod by aligning it alongside a ruler. Let the true length of the rod
be denoted by !, and suppose that the ruler is the real number line sub-
divided by marks in the ordinary way. The “multiresolution” process of
measurement will produce not the true length I but some finite sequence of
bits that can be interpreted as the initial (i.e. most significant) bits in the
binary expansion of some real number. The finite number of bits produced
by the measurement exactly define the binary expansion of some dyadic
rational number. Successive refinement of the measurement (with the aid
of a magnifying lens, perhaps) will lead to increasingly accurate dyadic ra-
tional approximations to /, but we cannot infer anything at all about the
as yet unmeasured bits. This process of successive refinement should be
thought of as selection of successively smaller intervals of the real line that
contain the number {. This is the multiresolution step: A measurement of
the length of the rod produces a pair of (dyadic rational) numbers z; and
yi that are the coordinates of the interval containing I, such that

<i<y,

and a second measurement that refines the first produces a pair of numbers
z2 and y» such that
n<<l<yp<n.

Our task is to determine this gain in information provided by the pair of
measurements.

Since we are assuming that the gain in information depends only on
the measured intervals in which [ is contained, we may express the gain in
information as a function of the endpoint coordinates of the pair of intervals:

Al = Al(zy,41,22,¥2) -

The coordinates of the endpoints of the measurement intervals depend on
the unit of measurement of the ruler (the numbers z;,y;,z3,y2 will be
different if centimeters or inches are marked) and on where the zero-point
of the ruler is placed alonggide the rod, but the gain in information is surely
independent of both. This implies that the function AJ that measures
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the gain in information must be invariant under the transformations that
correspond to scale changes, i.e.

t—at

where a # 0, and under transformations that correspond to a rigid motion
which shifts the position of the zero point of the scale without changing the
distance between any pair of marks, i.e.

t—t4+b.

The most general combination of these two types of transformation has the
form
t—at+b

with a # 0 and b an arbitrary real number. Let us write this transformation
ast — 7v,,(t). The collection of thesc transformations constitutes the affine
group, and our first axiom states that the function AI that measures the
information gain is invariant — i.e. unchanged — by the action of affine
transfcrmations:

Axiom 1: For any dyadic rational numbers w, z, y, z and any affine trans-
formation v, the gain in informaticn satisfies the equation

AI(y(w),v(z),7(¥), 1(2)) = Al(w,z,y,2) .

Sunpose that scientists in two laboratories are racing to be the first to
measure the length | of the unicorn’s horn. Both laboratories find that
z, < 1 < y;. Proceeding with cauti